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ABSTRACT

Hourly data collected from ground stations were used to study themaximum daytime heat indexHi in the

Mesoamerica and Caribbean Sea (MAC) region for a 35-yr period (1980–2014). Observations of Hi re-

vealed larger values during the rainy season and smaller values during the dry season. The Hi climatology

exhibits the largest values in Mesoamerica, followed by the Greater Antilles and then by the Lesser An-

tilles. The trend inHi indicates a notable increasing pattern of 0.058C yr21 (0.108F yr21), and the trends are

more prominent in Mesoamerica than in Caribbean countries. This work also includes the analysis of heat

index extreme events (HIEE). Usually the extreme values of the heat index are used for advising heat

warning events, and it was found that 45 HIEEs occurred during the studied period. The average duration

of HIEE was 2.4 days, and the average relative intensity (excess over the threshold) was 2.48C (4.38F). It
was found that 82% of HIEE lasted 2 or 2.5 days and 80% exhibited relative intensity of 38C (5.48F) or less.
It was also found that the frequency of extreme events has intensified since 1991, with the highest

incidences occurring in 1995, 1998, 2005 and 2010, and these years coincide with the cool phase of El

Niño–Southern Oscillation (ENSO). Therefore, the occurrences of HIEE in the MAC region appear to be

at least partially influenced by ENSO episodes.

1. Introduction

The heat index is the combination of the air temper-

ature and relative humidity (RH) and is an attempt to

estimate what humans feel as an apparent temperature.

Variations in the heat index are linked to both human

health and energy demands to maintain indoor room

comfort (González-Cruz et al. 2013) and hence it is

important to characterize the behavior of the heat index.

This index is based on the human energy balance and

was determined as the result of various extensive bio-

meteorological studies (Fanger 1970; Steadman 1979;

Rothfusz 1990). The human body usually adapts to hot

temperatures by perspiration, when heat is removed

from our body by sweat evaporation. High values of RH

reduce the evaporation rate, causing lower heat removal

from our body and hence the sensation of being

overheated. Steadman (1979) studied the human re-

sponse under different environmental conditions to

derive a theory for estimating the apparent tempera-

ture or heat index. His method takes into account

the effects of air temperature and RH on the reaction

of the human body and expresses the physiological

reaction, clothing resistance, moisture content, and

heat-transfer interactions as an apparent temperature.

Steadman’s work was based on the human bio-

meteorology study conducted by Fanger (1970), who

measured the reaction of 256 adults wearing different

clothing and performing various physical activities

under certain environmental conditions. Fanger’s ex-

periments provided the basis for deriving physiologi-

cal data describing the average heat and moisture

transfer. Steadman (1979) derived a method for

estimating the apparent temperature based on the

amount of heat lost via exhaling and the skin’s re-

sistance to heat and moisture transfer. Rothfusz (1990)

used Steadman’s results to develop a regression equation,
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which expresses the relationship between temperatures at

different RHs and the skin’s resistance to heat and

moisture transfer. The National Weather Service (NWS)

developed its own algorithm for estimating the heat index

based on Steadman’s and Rothfusz’s work. This method

was adopted and it is available online (NWS 2016), with a

detailed description of the algorithm given by Anderson

et al. (2013).

Dixon (1998) reported the heat index climatological

conditions in the southern United States, and pointed

out that the climatological conditions can be used to

evaluate the forecasted heat index severity and assisting

with the issuance of hazardous heat advisories. It is

known when the heat index is greater than or equal to

40.58C (1058F) the warmer environment is dangerous

and can potentially cause heat cramps and heat stroke

when exposure is prolonged in combination with phys-

ical activity (NWS 2017). Dixon (1998) reported on

10 yr (1980–89) of summertime daily air temperature

and RH data for 40 stations. New Orleans, Louisiana,

recorded the largest heat index: 51.18C (1248F). Rakib

(2013) presented the temporal variation of extreme

temperatures in Bangladesh. The variables considered

in this study include the average seasonal maximum and

minimum air temperature, RH, and maximum heat in-

dex. Daily records were obtained from 18 meteorologi-

cal stations during the period (1981–2010). Rakib (2013)

observed a significant increase in air temperature during

the past decades, especially along the coastal and central

areas of Bangladesh. A larger maximum heat index was

also observed during the wet season.

The NWS issues an ‘‘excessive heat warning’’ (NWS

2017) when the maximum heat index temperature is

expected to be 40.68C (1058F) or higher for at least

2 days and the nighttime air temperatures will not drop

below 21.18C (758F). However, these criteria vary

across the country, especially for areas not accustomed

to extreme heat conditions. Robinson (2001) suggested

that heat watches and warnings are issued when the

heat index is greater than or equal to 40.68C (1058F)
during the daytime and greater than or equal to

26.68C (808F) at nighttime for at least two consecutive

days. Thus, the heat index extreme event (HIEE) can

be used to anticipate the potential occurrence of a

heat wave.

A heat wave is a persistent period of having a signifi-

cant temperature deviation from the normal climate

conditions of a given region, and consequently a heat

wave can occur in a region with either a hot, warm, or

cold climate. In general, every location has its own and

unique climatology of heat, and consequently, there are

several definitions of heat waves, but all of them include

some notions of persistent extreme high temperatures.

The World Meteorological Organization defines a heat

wave as the event when the daily maximum tempera-

ture exceeds the average maximum temperature by

58C (98F) for more than five consecutive days, where the

normal period is from 1961 to 1990 (MetOffice 2015).

In the United States a heat wave is defined as a period

of at least two consecutive days of excessively hot

weather (American Meteorological Society 2015). In

the northeast, which is characterized by having high

humidity, a heat wave is three consecutive days where

temperatures reach or exceed 32.28C (908F). In dry

zones, the heat wave occurs when the temperature

reaches 37.88C (1008F) for three or more consecutive

days. The HIEE is a different phenomenon from the

heat wave, since the heat wave requires persistent high

temperatures, whereas the HIEE requires persistent

high temperatures, which are combined with observed

RH values.

To the authors’ knowledge, there are no published

scientific studies of a heat index over the MAC region;

however, studies do show that extreme episodes of the

heat index are triggering serious public health issues in

most midlatitude and continental cities (Wang et al.

2012; Loughnan et al. 2014; Méndez-Lázaro et al. 2015;

Portier et al. 2010). Therefore, this paper focuses on

understanding the climatology and trends of Hi, as well

as analyzing the extreme events in terms of duration,

intensity, and frequency in the MAC region. Section 2

of this paper explains what types of data were used.

Section 3 describes the methodology, which includes the

major challenges encountered when dealing with

weather station data; a general overview of the MAC

climate characteristics; the analyses of Hi; and the

characterization of HIEE. Section 4 presents an analysis

of our results, which are organized into three parts:

station characteristics, Hi trends and climatology, and

analysis of extreme events. Section 5 includes a sum-

mary of the work and our conclusions.

2. Data

Two types of data were used in this research: re-

analysis data and observations from weather stations.

The source of the first type of data was the National

Centers for Environmental Prediction–National Center

for Atmospheric Research (NCEP–NCAR) reanalysis.

Thirty-five years (1980–2014) of 6-hourly data were

used for estimating theMAC climate characteristics and

are used to describe the spatial variability of the re-

gional Hi pattern (NCEP 2016a). The NCEP–NCAR

reanalysis dataset includes the following domain over

08–308Nand 608–100 8W,which corresponds to (133 18)

234 grids with 2.5 8 3 2.5 8 resolution. NCEP–NCAR
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reanalysis data are developed by using a state-of-the-art

analysis/forecast system to perform data assimilation

using past global data from 1948 to the present. Thus,

there are systematic differences between the NCEP–

NCAR reanalysis and observational datasets (NCEP

2016b). For a given grid, the NCEP–NCAR data rep-

resent the average value for a relatively large area of a

specific variable, whereas a station observation is a

measurement of a single point. Hence, temperatures

and RH from NCEP–NCAR reanalysis data are ex-

pected to be different from station measurements.

However, NCEP–NCAR data simplify calculations,

since there are no missing values, and provide the op-

portunity to derive insights about the behavior of me-

teorological variables.

Thirty-five years’ (1980–2014) of hourly data from 15

ground stations were also used to perform Hi analyses.

The source for the weather station data is the National

Center for Environmental Information (NCEI 2016),

which also includes the Global Historical Climatology

Network (GHCN). The MAC region station data are

mostly limited by the availability of observations of

dewpoint temperature over 35 yr. The characteristics of

the Caribbean andMesoamerica stations, along with the

percentage of data for each station, are given in Table 1,

which also includes the original and filtered data, after

applying data quality control. The MAC region (58–308N
and 908–608W) includes the Caribbean Sea, which is

divided into the Lesser and Greater Antilles, and

Mesoamerica, which includes parts of Mexico, Central

America, and the northern part of South America, as

shown in Fig. 1.

3. Methodology

Themethodology applied in this research includes five

major tasks designed to develop a strategy for accom-

plishing the objectives of this work: 1) evaluate the

quality of the weather station data, 2) use NCEP–

NCAR data to obtain climate characteristics of the

MAC region, 3) present the heat index definition and

its 24-h climatology, 4) describe the techniques for

computing trends and climatology patterns of Hi, and

5) describe the analysis of the HIEE.

a. Data quality control

Ground station data recorded the real and inherent

patterns of behavior of the atmosphere and revealed the

actual climate patterns and variability. However,

working with long-term ground station records is chal-

lenging since each individual station is accompanied by

their own set of inherited obstacles. For example, the

types of instruments used vary since they belong to

different countries. The observations were collected at

different frequencies: every 1, 3, or 6 h. It should be

noted that the frequency of data collection affects the

accuracy on the calculation of Hi. Observations during

the daytime are more abundant than during the night-

time. Some stations show inconsistencies in the fre-

quency of data collection.

A homogeneous climate time series is defined as one

where variations are caused only by alterations in

weather and climate (Peterson et al. 1998a). Thus, in-

homogeneous climate data include errors such as drifts,

jumps, and changes in variability. These types of error are

associated with instrument changes, noncalibration, sta-

tion moves, urbanization, different observation times,

human errors, etc. The inhomogeneities can bias a time

series and lead to misinterpretations of the studied cli-

mate (Peterson et al. 1998b). There are several algorithms

and strategies that help in detecting and fixing the in-

homogeneity features in the climate data (Alexandersson

1986; Peterson et al. 1998a,b; Reeves et al. 2007;

Gallagher et al. 2013; Menne et al. 2009).

A request for information regarding the location and

equipment history of the studied stations was submitted;

however, no information corresponding to the NCEI

stations was found. The available statistical tools usually

work with a station, which is surrounded by similar

stations, and the available observations from the nearby

stations are used to remove the inhomogeneities of the

station in question (Peterson et al. 1998a,b; Reeves et al.

2007). Air and dewpoint temperatures were collected

from weather stations, which are mostly located at in-

ternational airports. Because of the long-term duration

of these data, several of the datasets contained in-

homogeneities. The stations that provided the required

data for this study are isolated weather stations, and,

consequently, conventional tools are not applicable for

treating inhomogeneous time series. However, an al-

ternative method was developed in this work and con-

sists of removing values that are not likely to belong to a

given climate dataset. Thus, the implemented approach

for each station includes five steps.

1) REMOVAL OF INSUFFICIENT DATA

Data were organized for each hour, and 24 time se-

ries were created. One series was created with daily

observations at 0000 UTC, the second series at 0100

UTC, etc., until completing the 24th time series at 2300

UTC. These series are called hour-daily (HD) time

series, and each complete time series includes 12 784

HD observations. Therefore, any HD time series that

has more than 75% missing values was removed from

the dataset, because of a lack of sufficient data to be

analyzed.
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2) REMOVAL OF HOURLY INCONSISTENT DATA

An inconsistent value is defined as a value that is

not likely to belong to the majority of the values of

a given climate dataset. One approach for detecting

inconsistent data is to use Chebyshev’s inequality

(Rohatgi 1976). The advantage of using Chebyshev’s

inequality is that it is a robust approach for detecting

inconsistent data and does not require knowledge of

the probability distribution of the underlying climate

data. Chebyshev’s inequality can be expressed as

follows:

P(jx
i
2m

i
j. ks

i
)# 1/k2 , (1)

where P is the probability statement; mi and si are

the mean and standard deviation, respectively, of the

climate data xi (air or dewpoint temperatures) at the ith

station; and k . 1. As a result, any value that falls out-

side this interval (mi 6 ksi) is unlikely to be a real ob-

servation and will be declared an inconsistent record.

Any value satisfying the aforementioned condition was

removed from the dataset. Thus, an inconsistent value

may be detected by using a k value between 3 and 5. A k

value of 3 was selected since it provided satisfactory

results. As the value of k is reduced, the screening pro-

cedure becomes more restrictive. Chebyshev’s proba-

bility statement indicates that, for a k value of three,

89% or more of the selected data are likely to corre-

spond to the actual observed climate data. The mean

and standard deviation for each HD time series were

estimated using the total number of available observa-

tions for the underlying time series. Inconsistent data

TABLE 1. Characteristics of the MAC stations.

Station name and location

Lat

(8N)

Lon

(8W)

Elev

(m)

Original data

(No. of days)

Filtered data

(No. of days)

Avg air temperature

Tmax (8C)
Avg

RH (%)

Avg

Hi (8C)
Diff

Hi 2 Tmax (8C)

RobertL.BradshawInternational

Airport, Basseville, St. Kitts

and Nevis

17.311 62.719 51.8 95%

(12 101)

93%

(11 888)

29.3 68.5 33.4 4.1

V. C. Bird International Airport,

St. John’s, Antigua and

Barbuda

17.137 61.793 18.9 95%

(12 203)

94%

(12 025)

29.4 67.4 33.2 3.8

Pointe-à-Pitre Le Raizet

Airport, Pointe-à-Pitre,
Guadeloupe

16.265 61.532 11 71%

(9068)

67%

(8584)

29 69.8 32.8 3.8

Martinique Aimé Césaire
International Airport, Le

Lamentin, Martinique

14.591 61.003 4.9 90%

(11 509)

89%

(11 341)

29.9 66.2 33.9 4

E. T. Joshua Airport,

Kingstown, St. Vincent

13.144 61.211 20.1 85%

(10 920)

8 4%

(10 754)

29.7 68.6 34 4.3

Luis Muñoz Marín International

Airport, San Juan, Puerto Rico

18.417 66.000 4 99%

(12 630)

97%

(12 454)

29.7 64.8 33.4 3.7

Cibao International Airport,

Santiago de los Caballeros,

Dominican Republic

19.406 70.605 172.2 89%

(11 441)

87%

(11 189)

30.4 57.9 33.2 2.8

Sangster International Airport,

Montego Bay, Jamaica

18.504 77.913 1.2 99%

(12 627)

94%

(12 052)

30.1 68.1 35 4.9

Toussaint Louverture In-

ternational Airport, Port-

au-Prince, Haiti

18.580 72.293 37.2 80%

(10 245)

73%

(9305)

32 51.4 34.8 2.8

Golosón International Airport,

La Ceiba, Honduras

15.742 86.853 14.9 95%

(12 150)

87%

(11 116)

29.5 69.6 34.1 4.6

Jose Marti International

Airport, Havana, Cuba

22.989 82.409 64 97%

(12 391)

95%

(12 132)

29.2 60.3 32.1 2.9

Miami International Airport,

Miami, Florida

25.791 80.316 8.8 99%

(12 695)

97%

(12 382)

28.6 57.3 31 2.4

La Chinita International Air-

port, Maracaibo, Venezuela

10.558 71.728 71.6 92%

(11 768)

89%

(11 437)

32.8 58.1 38.3 5.5

ErnestoCortissoz International

Airport, Soledad, Colombia

10.890 74.781 29.9 99%

(12 669)

95%

(12 224)

31.7 65 37.9 6.2

Valladolid Airport, Villanubla,

Mexico

20.683 88.200 27 90%

(11 513)

88%

(11 344)

30.7 62 35.1 4.4
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were considered to be missing values and were not es-

timated in order to avoid deriving fictitious results and

incorrect conclusions.

3) REMOVAL OF 24-H INCONSISTENT DATA

The third rule consists of removing any value where

the difference in temperature for the preceding or fol-

lowing day was greater than 258C (778F). Hence,

searching for inconsistent data was computed by using

jxt 2 xt21j . 258C (778F), where t is the corresponding

time index for the HD time series.

4) REMOVAL OF JULIAN DAY INCONSISTENT DATA

The data were organized as follows. First, we se-

lected the observed value at 0000 UTC from the first

Julian day (i.e., yearday) and from 1980. Second, we

selected the observed value at 0000 UTC from the first

Julian day and from 1981, and repeated the process

until collecting the last observation at 0000 UTC from

the first Julian day and from 2014. At this stage, the

first of 35 observations are completed. The second

series was created by repeating the previous steps but

by using the second Julian day. Thus, the last series at

0000 UTC will be created by repeating the previous

steps and using the 365th Julian day. The process is

then repeated at 0100 UTC to create another 365 se-

ries, with each one having 35 observations. The pre-

vious steps are repeated again at 0200 UTC and so

on, until completing the last series at 2300 UTC.

These series are defined as Hour-Julian day (HJ) time

series. Chebyshev’s inequality was used to detect

inconsistent values in each series, and the mean and

standard deviation were computed for each of the HJ

time series.

5) FINAL ELIMINATION OF INCONSISTENT DATA

The hourly data were reorganized in the original

format and Chebyshev’s inequality was again used

to remove inconsistent data. The average and stan-

dard deviation were computed using all of the filtered

FIG. 1. Location of the MAC region. The numbers indicate the names and locations of the selected stations, and the red dashes indicate

the homogeneous regions associated with the Greater and Lesser Antilles.
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data. Table 1 shows the percentage of original and

the filtered data, and Fig. 2 shows the original and

the filtered data for stations located in Antigua

and Barbuda, Cuba, and Venezuela. These stations

represent examples for the Lesser and Greater Antilles,

and Mesoamerica, respectively. Figure 2 shows that

values that are not likely to belong to real observations

were subsequently and successfully removed using

Chebyshev’s inequality.

b. Mesoamerica and Caribbean climate
characteristics

The MAC region receives intense solar irradiance

every day because of its proximity to Earth’s equa-

tor. The climatology analyses in this section are

based on daily averages of 6-hourly data extracted

from the NCEP–NCAR dataset during the studied

period. In this section, Hi was computed using the

maximum of the 6-hourly data of air temperature

and the corresponding RH. The average over the

entire period and the annual trend were computed

for every grid.

The climatology of air temperature follows a uni-

modal distribution receiving the largest air temper-

ature in August and the smallest in January (Fig. 3a).

The Hi climatology follows a similar pattern of daily

maximum air temperature Tmax and is given in

Fig. 3b. The climatology of the RH follows a bimodal

distribution and starts ascending in March until it

reaches its peak in June, with a second, smaller peak

occurring during September–October, and then de-

scending until completing the cycle in March

(Fig. 3c). This follows the reported rainfall bimodal

climatology for the Caribbean (Angeles et al. 2010)

and the observed RH. The rainfall increases hu-

midity during the rainy season and decreases it

during the dry season. The ocean increases the RH

as a result of evaporation and moisture advection,

which brings considerable humidity to the MAC

region. The average spatial distribution shows that

temperatures reach their largest values over the

ocean and the RH shows the largest values over

the Mesoamerican region (Figs. 3d,f). The spatial

distribution of averages and trends of Hi were

computed and are exhibited in Figs. 3e and 3g, re-

spectively. The largest Hi values over the land area

are observed in Mexico (Yucatan Peninsula), Cuba,

Haiti, Jamaica, and Puerto Rico. On the other hand,

the largest increasing trends inHi over land areas are

exhibited in the Lesser Antilles followed by the

Greater Antilles.

Precipitation is primarily affected by troughs em-

bedded in easterly waves during the rainy season

(May–October), generating large amounts of rainfall

in the Caribbean basin. In addition, subsidence from

Central America, the Southern Oscillation by means

of vertical wind shear, wind divergence, the North

Atlantic Oscillation, and Saharan dust all contribute

to the day-to-day rainfall variations (Goldenberg

et al. 2001; Giannini et al. 2001; Jury 2015). Cold

fronts generate large cloudy areas and precipitation

during winter months. The confluence of these synoptic-

scale events causes the Caribbean rainy season to

follow a bimodal distribution (Angeles et al. 2010),

dividing the season into an early rainfall period (May–

July) and a late rainfall period (August–October), with a

short drought period in July. The first rainfall peak

occurs in May and the second in September. The

lowest amount of precipitation in the Caribbean oc-

curs from December to March and is known as the

dry season.

c. Estimation of the heat index and 24-h climatology

Robinson (2001) defines the heat index as the com-

bination of the ambient temperature and RH that

approximates the environmental aspect of the thermal

regime of a human body. There are several methods

for estimating the heat index. Anderson et al. (2013)

investigated the performance of 21 different algo-

rithms under U.S. weather conditions. They used

daily 2011 weather data, including mean air tempera-

ture, mean dewpoint temperature, and mean RH, in

all 50 U.S. state capitals. They analyzed whether

each algorithm produced heat index values consis-

tent with Steadman’s original apparent temperature

(Steadman 1979) and found that the algorithms

were inconsistent across studies. They concluded

that the NWS algorithm provides reproducible and

consistent environmental results. In this work, we

adopted the NWS approach described in Anderson

et al. (2013).

Typically, temperature and RH are combined to

develop short-term heat index forecasts with the goal

of providing heat warnings to the public. The approach

used in this work is different from the standard use

of the heat index, in the sense that we are using in-

formation from a station to calculate the heat index,

and climatology and trends are based on 35 yr of hourly

data. However, we adopted the standard algorithm

to calculate the heat index (NWS 2016; Anderson

et al. 2013).

Usually, stations reported hourly data during the

daytime, and consequently Hi at a given station was

calculated using the maximum of the hourly air

temperature recorded during the hours from 1000 to

2200 UTC, and the dewpoint was selected at the
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FIG. 2. Original and filtered (left) air temperature and (right) dewpoint for (a),(b) Antigua and Barbuda (example for Lesser Antilles),

(c),(d) Cuba (example for Greater Antilles), and (e),(f) Venezuela (example for Mesoamerica).
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time when Tmax occurred. This time interval was

selected because Hi is most likely to occur during

daytime hours. The 24-h climatology was calcu-

lated by computing the average for every hour during

the 35-yr dataset. The 24-h climatology indicates that

maximum Hi corresponds to Tmax and approximately

the minimum of the RH, whereas the minimum

Hi corresponds to the minimum air temperature and

FIG. 3. Climatology of (a) air temperature, (b) heat index, and (c) RH. The average (d) air temperature, (e) heat index, and (f) RH.

(g) The trends in the spatial distribution of the heat index. Climatology, grid averages, and grid trends were computed using 6-h

NCEP–NCAR data during a 35-yr period (1980–2014).
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about the maximum RH, as shown in Fig. 4. Figure 4

exhibits the 24-h average heat index behavior at

three stations: Antigua–Barbuda (top; 17.1378N,

61.7938W), Puerto Rico (middle; 18.4178N, 668W),

and Colombia (bottom; 10.898N, 74.7818W). These

stations correspond to samplings from the Lesser

and Greater Antilles, and the Mesoamerica zone,

respectively.

FIG. 4. The 24-h climatology of air temperature, heat index, and relative humidity for

stations located in (a) Antigua and Barbuda, (b) Puerto Rico, and (c) Colombia. The time is

given in UTC, and these figures show the averages of hourly 35-yr data.
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d. Trends and climatology of the maximum daytime
heat index

The climatology patterns and characteristics of each

station were organized into homogenous climate zones

to best represent the Hi seasonal variability over dif-

ferent geographical zones and to conduct proper ana-

lyses. Self-organizing feature maps (SOFMs) were used

to identify the homogeneous climatological patterns. An

SOFM is an artificial neural network that uses an un-

supervised competitive learning algorithm to organize a

set of data into homogenous classes (Hagan et al. 2014;

Yip and Yau 2012; Ultsch and Roske 2002). The SOFM

suggests that the data can be organized into three ho-

mogenous groups that correspond to the different geo-

graphical zones. The homogeneous groups were located

in the Lesser Antilles, the Greater Antilles, and the

Mesoamerica coastal zone. Figure 1 indicates the

weather station locations, with the majority of stations

located in the coastal areas. The dotted red line in Fig. 1

shows the identified homogenous zones. The SOFM

included Miami, Florida (station 12), and Honduras

(station 10) within the Greater Antilles zone since their

climatological characteristics resemble inherent prop-

erties associated with this zone.

The annual time series of a given climate variable

usually exhibit an increasing or decreasing trend that is

typically represented by a linear function. The slope of

the linear function is estimated by parametric or non-

parametric methods. The usual parametric method is

the least squares method and one of the nonparametric

techniques is the Theil–Senmethod (Zaman et al. 2015).

The nonparametric method is robust to the presence of

outliers and both methods are affected by the autocor-

relation of the underling time series. Hence, the slope

significance is sensitive to the presence of the autocor-

relation of the climate data. It is known that when the

autocorrelation of the time series is high, the t statistic

associated with the slope is overestimated and conse-

quently the significance of the slope is also over-

estimated. To avoid this problem, the autocorrelation of

the data should be parameterized and included in the

regression model (Abraham and Ledolter 2006).

Assuming the studied climate time series have

moderate autocorrelation, a linear regression meth-

odology was applied for computing trends, and the

daily averages were used to calculate the climatology

for Hi. A straight line was fitted to Hi to measure the

trend. The slope of the straight line was tested to de-

termine whether or not it is statistically significant.

Daily heat indices were also aggregated to compute

monthly and annual time series to estimate trends.

Data were also aggregated for homogenous zones to

estimate trends for the Lesser and Greater Antilles

and also for the Mesoamerica zone.

e. Analysis of heat index extreme events

In the MAC region, it is common to find places with

extreme hot behavior during the daytime. However,

the critical weather conditions occur when the hot

conditions are also maintained during the nighttime.

Therefore, the HIEE in the MAC region is defined as

an extraordinary hot event where the maximum-

daytime heat index and the minimum-nighttime heat

index both exceed the corresponding 97th percentiles

and this hot event must persist for at least two con-

secutive days. The 97th percentiles should be derived

with the analysis of at least 30 yr of hourly data, and

this percentile was determined after computing all

the potential extreme heat events based on a q per-

centile, where q varies from 95 to 99 in increments of

1. An HIEE must be a rare event and according to the

NWS (Robinson 2001) is such that a station should

have less than three extreme heat events per decade.

Thus, an approximation of a rare event definition for

the MAC region would be a station that has 10 or

fewer HIEEs during 3.5 decades, and the corre-

sponding percentile that meets this criterion was the

97th. Values about the 97th percentile were not se-

lected because some important hot–humid events

may be missing. Thus, when a high percentile is ap-

plied, it is difficult for the event to maintain the hot

and humid levels for 2 days to qualify as an extreme

event. On the other hand, values below the 97th

percentile were also not selected because they do not

correspond to the rare-event criterion.

4. Results

Results for analyzing theHi in the MAC region were or-

ganized into three parts. The first part describes the climate

characteristics of the stations and also the characteristics for

eachhomogenous region. The secondpart presents results of

trend analysis and climatology patterns of Hi, and the third

part presents the analysis of heat index extreme events.

a. Station climate characteristics

Table 1 summarizes the climate characteristics for

each of the studied stations. In each country, the station

that provides the most complete dataset was selected

and the largest sample size was found at the Miami In-

ternational Airport (12 695 days) and the smallest was in

Guadeloupe (9068 days). The station that exhibits the

largest Tmax average was La Chinita International Air-

port in Maracaibo, Venezuela (32.88C, 918F), whereas
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the station with the lowest air temperature average was

Miami International Airport (28.68C, 83.48F). This re-

sult was expected since these stations are located at

about sea level and Miami is at the highest latitude

(25.88N) and La Chinita at the lowest latitude (10.68N).

Pointe-à-Pitre Le Raizet Airport in Guadalupe shows

the highest average RH of 69.8%, and Toussaint Lou-

verture International Airport in Port-au-Prince, Haiti,

exhibited the lowest average RH (51.4%). La Chinita

International Airport shows the largest average Hi

[38.38C (100.98F)]; whereas Miami International Airport

shows the smallest average of Hi [318C (87.88F)]. This
result was expected because temperature has a greater

influence than RH on Hi. The difference between Hi

and Tmax was computed. The largest difference [6.28C
(11.28F)] was reported at Ernesto Cortissoz In-

ternational Airport in Soledad, Colombia. The average

temperature at La Chinita is larger than that at Ernesto

Cortissoz, and it was expected that the largest differ-

ence should be found at La Chinita. However, the RH

humidity is larger at Ernesto Cortissoz and it caused

the largest difference at Ernesto Cortissoz. On the other

hand, the smallest difference [2.48C (4.38F)] was found at

Miami International Airport, since the temperature was

the dominant parameter in the estimation of the heat

index.

Table 2 shows a summary of the characteristics of each

of theMesoamerican and Caribbean zones, and includes

the averages of sample size, Tmax, RH, Hi average, and

average of the difference between Hi and Tmax. The

Lesser and Greater Antilles exhibited similar character-

istics, with the exception of RH, as the Lesser Antilles

showed on average the largest RH since they are very

small islands with intense rainfall and ocean evaporation

dominates in this zone. In terms of Tmax, the averages for

the Lesser and Greater Antilles were almost the same,

having the smallest average maximum air temperature

[29.48C (84.98F)] in the studied area, while the Meso-

america zone exhibits the largest average of Tmax [31.78C
(898F)]. The Greater Antilles exhibit the smallest differ-

ence (Hi2 Tmax), about 3.48C (6.18F). On the other hand,

theMesoamerica zone showed the largest averages ofHi,

Tmax, [37.18C (98.88F), 31.78C (898F)] and the largest

difference [5.48C (9.88F)]. Thus, it is likely that people

living in Mesoamerican countries are exposed to a higher

risk than those living inCaribbean countries (OSHA2016).

b. Trends and climatology

The Tmax time series are shown in Fig. 5a, while Fig. 5b

shows Hi for the MAC region based on station data. A

linear trend was computed for each of the time series

and significant trends were observed: Tmax and Hi of

0.028Cyr21 (0.048Fyr21) and 0.058Cyr21 (0.108Fyr21),

respectively. Trenberth et al. (2007) and Jury (2015)

reported a similar temperature trend for the Caribbean

and Puerto Rico, respectively. The trend and climatology

for the RH are given in Figs. 5c and 5d, respectively.

Figure 5c shows that RH has some fluctuation around the

mean with no significant trend. Figure 5d shows that the

climatology of the RH follows a bimodal distribution and

starts ascending in March until reaching its first peak in

June with a small reduction in July. The largest peak

occurs in November and then starts descending until

completing the cycle inMarch. Angeles et al. (2010) show

that the Caribbean rainfall climatology exhibits a small

reduction in July and they claim that the rainfall bimodal

behavior is influenced by the vertical wind shear and the

aerosol particles. Thus, it is likely that the RH bimodal

pattern is also influenced by the abovementioned vari-

ables. Figure 5e exhibits the climatology of Tmax and this

pattern is similar to the Hi climatology. Figure 5f shows

the climatology of Hi for the entire region, and follows a

unimodal distribution. The Hi reduction observed in

July is caused by the reduction in RH and the largest

peak in Hi is also caused by the increase in RH;

however, the largest value in Hi occurred earlier than

the peak in RH, because the air temperature is the

dominant variable and starts decreasing in September.

Figure 5g shows the difference betweenHi and Tmax for

the entire region and exhibits a similar pattern to Hi.

The difference between Hi and Tmax varies between

28C (3.68F) in January and 68C (10.88F) in August.

These analyses show how the potential periods for

extreme hot events are more likely to take place during

the rainy season and less likely to occur during the dry

season. This observation is in agreement with reports

presented in other parts of the world (Dixon 1998;

Rakib 2013).

TABLE 2. The climate characteristics of the MAC zones.

Zone

Avg filtered data

(No. of days)

Avg air temperature

Tmax (8C)
Avg

RH (%)

Avg

Hi (8C)
Avg diff

(Hi 2 Tmax) (8C)

Lesser Antilles 87% (11 160) 29.4 68.1 33.5 4.1

Greater Antilles 94% (12 026) 29.9 61.3 33.3 3.4

Mesoamerican coastal zone 93.7% (11 984) 31.7 61.7 37.1 5.4
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FIG. 5. Trends in monthly (a) maximum air temperature, (b) maximum heat index, and (c) minimum RH. The

climatology of (d) RH, (e) maximum air temperature, and (f) maximum heat index. (g) The difference of two

climatological variables: the maximum heat index and maximum air temperature. The RH presented is the one that

corresponds to the hourly maximum air temperature.
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Figures 6 and 7 show the Tmax and Hi trends for the

three MAC zones, respectively. The trends for Tmax and

Hi in each zone are given in Table 3, which indicates that

in the Lesser Antilles the trends of Tmax and Hi are

significant and show increasing trends of 0.028Cyr21

(0.038Fyr21) and 0.048Cyr21 (0.088Fyr21), respectively.

In addition, the trends for both Tmax and Hi in Meso-

america are significant, with a large rate of 0.068Cyr21

(0.118Fyr21) and 0.168Cyr21 (0.298Fyr21), respectively.

However, the trends for the maximum temperature and

heat index in the Greater Antilles are not significant, as

shown in Table 3. In addition, Fig. 8 and Table 3 show

that RH has no significant trend, with the exception of

the Lesser Antilles, exhibiting a reduction of 0.09% yr21.

Climatologies of Tmax, RH, andHi are shown in Fig. 9.

It is noted that climatologies for both Tmax andHi follow a

bimodal distribution for Mesoamerica; however, a uni-

modal distribution is shown for the Caribbean Islands

(Lesser and Greater Antilles). On the other hand, the

climatology for the Lesser Antilles shows the largest RH

with the smallest Hi, since its Tmax values are about the

smallest over the entire region of study. The climatol-

ogy of the RH follows a bimodal distribution and starts

ascending in March until obtaining its first peak in June

or in July, followed by a small reduction, and then

continues rising until achieving its maximum peak in

October or in November (Fig. 9, bottom). It can be

observed that the Mesoamerica region is the hottest

zone, followed by the Greater Antilles and then the

Lesser Antilles. On the other hand, the Lesser Antilles

revealed the largest RH, followed by Mesoamerica,

and the smallest RH (during summer) is in the Greater

Antilles.

c. Analysis of heat index extreme events

Table 4 shows the number of extreme hot events for

each station when the percentile varies from the 95th to

the 99th. Thus, the 97th percentile is the one that meets

the rare-event criterion and detects extreme events. This

percentile provides 45 extreme events for the region,

and it is enough data to perform an analysis of the

extreme events.

Observations collected during 1000–2200 UTC

were associated with daytime events, whereas obser-

vations that fall outside this range were used to

identify nighttime hot events. Based on 35 yr of hourly

FIG. 6. Trends of the maximum air temperature for (top) the Lesser Antilles, (middle) the

Greater Antilles, and (bottom) Mesoamerica.
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data, the maximum and the minimum thresholds for

each station were computed, and they are shown in

Table 5. The threshold for each station varies since

each station exhibits different local climatological

conditions. On average Mesoamerican countries ex-

hibit the hottest events [.46.08C (114.88F)] during the
daytime. The Lesser Antilles exhibits the hottest

nighttime events [.30.78C (87.38F)]. The difference

between the average daytime and nighttime thresh-

olds is greatest [17.58C (31.58F)] in Mesoamerica and

smallest [8.18C (14.68F)] in the Lesser Antilles. A

practical contribution of this work is to suggest

thresholds for identifying the occurrence of HIEE in

the MAC region.

The major characteristics of the HIEE are the dura-

tion d and the intensity, which are the parameters that

determine the severity of the hot events. For a given

station, the relative intensity (ri) was used to perform

analysis (instead of absolute intensity) since the in-

tensity depends on the local climate characteristics. The

relative intensity is the number of degrees by which the

maximum heat index exceeds the threshold (or 97th

percentile) of a given station, whereas the absolute in-

tensity is the actual intensity observed at a station. The

relative intensity was used to be able to compare the

strength of HIEE that occurs for different climate

conditions. Thus, to characterize the severity of an ex-

treme hot event, it is required to jointly study the du-

ration and intensity of the event, and the joint

probability distribution is given in Table 6 and Fig. 10.

The correlation between duration and relative

intensity is 0.19, indicating that there is a weak linear

dependency between these variables. Although the

correlation is weak, the analysis of HIEE should be

performed using simultaneous duration and relative

intensity, since a nonlinear dependency may exist be-

tween these variables. The joint probability distribution

can be used to answer practical questions related to the

duration and intensity of a given HIEE. For instance,

what would be the possibility that an extreme event will

last 3 days or less with a relative intensity equal or less

than 38C (5.48F)? The joint probability distribution in-

dicates that 71% of the extreme events in the MAC

region meet these conditions.

The joint probability distribution suggests that a

severe HIEE occurs when the relative intensity is

greater than 38C (5.48F) and persists for more than

4 days, and the probability of this event to occur is

0.022. Only one event out of 45 extreme events oc-

curred during the 35-yr study period, in September

2009 in Antigua and Barbuda and this event lasted

4.5 days and had a 48C (7.28F) relative intensity. On the

FIG. 7. As in Fig. 6, but for the maximum heat index.
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other hand, the most likely HIEE is that which shows a

relative intensity of less than 38C (5.48F) with a dura-

tion of less than 3 days, and the probability of this event

occurring is 0.55.

The last column in Table 6 shows themarginal duration

probability distribution of HIEE, whereas the last row

exhibits the marginal probability distribution of the rela-

tive intensity. It was found that the average duration of a

heat index extreme event was 2.43 days with a standard

deviation of 0.57 days. The mean of the relative intensity

was 2.448C (4.398F) and the standard deviation was 1.228C

(2.208F). The duration probability distribution indicates

that 82% of heat events last fewer than 3 days, and the

relative intensity distribution shows that 80% of heat

events exhibit a relative intensity less than 48C (7.28F).
The third important characteristic of the HIEE is the

annual and monthly frequencies. Figure 11a shows that

the annual frequency of extreme events has intensified

since 1991, with the highest incidences recorded in 1995,

1998, 2005 and 2010, and these years coincide with the

occurrence of ENSO, especially during its cool phase

(Null 2017). Figure 11b indicates that the HIEEs have

FIG. 8. As in Fig. 6, but for the RH associated with the maximum air temperature.

TABLE 3. Trends and p values for the Lesser and Greater Antilles and Mesoamerica zones.

Zone

Max air temperature Max daytime Hi RH

Slope (8C yr21) p value Slope (8C yr21) p value Slope (% yr21) p value

Lesser Antilles 0.02 0.00 0.04 0.00 20.09 0.00

Greater Antilles 0.01 0.29 0.02 0.27 0.02 0.22

Mesoamerica 0.06 0.00 0.16 0.00 20.00 0.92
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FIG. 9. Monthly climatology based on (top) daily maximum air temperature,

(middle) daily maximum heat index, and (bottom) daily RH associated with the

maximum air temperature.
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occurred during the rainy season with the largest fre-

quency occurring inAugust.During the rainy season in the

years 1982 and 1987, El Niño events were very strong and

moderate, respectively; but their effects were not reflected

in the frequency of the HIEEs. Hence, the frequency

of HIEE in the MAC is partially modulated by ENSO.

Additional research is needed to identify the remaining

factors that contribute to the development of HIEE.

5. Summary and conclusions

Ground station data were used to estimate the heat

index over the Caribbean and Mesoamerican region

for a period of 35 yr. A daily value of Hi was computed

based on hourly observations of air temperature and RH.

TheHi trend shows a notable increase during the studied

period. The trend of the heat index is more prominent in

Mesoamerica than in the Caribbean countries.

Values ofHi were higher in Mesoamerica, followed by

the Greater Antilles and then by the Lesser Antilles.

Climatology ofHi follows a unimodal distribution for the

entire Caribbean Islands with the largest values occurring

in August. Mesoamerican countries exhibited a bimodal

Hi distribution with the first peak in May and the second

inAugust. The climatology of the RH in theMAC region

follows a bimodal distribution with the largest peak in

June and the second peak occurring during the months of

October–November with the smallest RH occurring in

March. In the MAC region the RH exhibits fluctuations

about themeanwith no significant trend. The climatology

TABLE 4. Heat index extreme events per station and per percentile.

Station and location

HI extreme events

95th percentile

HI extreme events

96th percentile

HI extreme events

97th percentile

HI extreme events

98th percentiles

HI extreme events

99th percentile

RobertL.BradshawInternational

Airport, Basseville, St. Kitts

and Nevis

12 4 3 2 1

V. C. Bird International

Airport, St. John’s, Antigua

and Barbuda

14 12 10 4 3

Pointe-à-Pitre Le Raizet

Airport, Pointe-à-Pitre,
Guadeloupe

4 2 0 0 0

Martinique Aimé Césaire
International Airport, Le

Lamentin, Martinique

2 2 1 1 0

E. T. Joshua Airport,

Kingstown, St. Vincent

10 9 1 0 0

Luis Muñoz Marín
International Airport,

San Juan, Puerto Rico

11 8 4 3 0

Cibao International Airport,

Santiago de los Caballeros,

Dominican Republic

6 4 1 0 0

Sangster International Airport,

Montego Bay, Jamaica

18 10 5 0 0

Toussaint Louverture

International Airport,

Port-au-Prince, Haiti

10 6 2 2 0

Golosón International Airport,

La Ceiba, Honduras

9 7 2 1 1

Jose Marti International Air-

port, Havana, Cuba

2 1 1 1 0

Miami International Airport,

Miami

17 9 6 3 1

La Chinita International Air-

port, Maracaibo, Venezuela

14 9 6 4 3

ErnestoCortissoz International

Airport, Soledad, Colombia

5 3 3 1 1

Valladolid Airport, Villanubla,

Mexico

10 0 0 0 0

Total No. of HI extreme events 144 86 45 22 10
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of Hi ranges from 308C (868F) to 378C (98.68F), the RH

varies from 60% to 67%, and the Tmax range from 288C
(82.48F) to 328C (89.68F).
The HIEE in the MAC region is defined as an ex-

traordinary hot event where the maximum-daytime heat

index and the minimum-nighttime heat index both exceed

the corresponding 97th percentiles and this hot event must

persist for at least two consecutive days. The average

thresholds for theminimumand themaximumheat indices

for the Lesser Antilles are 30.78 and 38.88C (87.38 and

101.88F), respectively; for the Greater Antilles they are

27.78 and 40.28C (81.98 and 108.08F); and for Mesoamerica

they are 28.58 and 46.08C (83.38 and 114.88F). On average,

Mesoamerican countries exhibit the hottest daytime

events [.46.08C (114.88F)] and the Lesser Antilles exhibit

the hottest nighttime events [.30.78C (87.38F)]. On aver-

age, the difference between the daytime and nighttime

thresholds is greatest in Mesoamerica [17.58C (31.58F)]
and smallest in the Lesser Antilles [8.18C (14.68F)].
The duration and relative intensity ofHIEEswere used

to characterize these events. The severity of an HIEE

cannot be determined just by looking at the duration of

the relative intensity alone. It is necessary to observe the

strength of both variables simultaneously; that is, it is

recommended that the joint probability distribution be

used to estimate the likelihood that a HIEE develops at a

certain level of strength.

The correlation between the duration and relative

intensity is 0.19, indicating that there is a weak linear

dependency between these variables. Although the

TABLE 5. Heat index thresholds (the values in the last three columns are the averages of all of the stations in their respective groups: e.g.,

Venezuela, Columbia, and Mexico are one group).

Station and location

Thresholds (97th

percentile) Avg Avg Avg diff in

Min (8C) Max (8C) min (8C) max(8C) thresholds (8C)

Robert L. Bradshaw International

Airport, Basseville, St. Kitts and Nevis

31.1 38.7 30.7 38.8 8.1

V. C. Bird International Airport, St.

John’s, Antigua and Barbuda

31.5 38.2

Pointe-à-Pitre Le Raizet Airport, Pointe-

à-Pitre, Guadeloupe

29 38.8

Martinique Aimé Césaire International

Airport, Le Lamentin, Martinique

30.2 39.1

E. T. Joshua Airport, Kingstown, St.

Vincent

31.7 39

Luis Muñoz Marín International Airport,

San Juan, Puerto Rico

30.1 39.5 27.7 40.2 12.5

Cibao International Airport, Santiago de

los Caballeros, Dominican Republic

23.9 39.6

Sangster International Airport, Montego

Bay, Jamaica

30.9 42.3

Toussaint Louverture International

Airport, Port-au-Prince, Haiti

28.7 40.3

Golosón International Airport, La Ceiba,

Honduras

24.6 41.1

JoseMarti International Airport, Havana,

Cuba

24.5 40

Miami International Airport, Miami 31.2 38.7

La Chinita International Airport,

Maracaibo, Venezuela

31.9 45.2 28.5 46.0 17.5

Ernesto Cortissoz International Airport,

Soledad, Colombia

31.9 43.2

Valladolid Airport, Villanubla, Mexico 21.7 49.7

TABLE 6. Bivariate and marginal probability distributions of

the HIEE.

ri (8C)

fD(d)fD,ri(d, ri) 1 2 3 4 5

d (days) 2.0 0.1111 0.2222 0.0889 0.0222 0.0444 0.4889

2.5 0.1111 0.1111 0.0222 0.0444 0.0444 0.3333

3.0 0 0.0222 0.0222 0 0 0.0444

3.5 0.0222 0 0.0667 0.0222 0 0.1111

4.0 0 0 0 0 0 0

4.5 0 0 0 0.0222 0 0.0222

fri(ri) 0.2444 0.3556 0.2 0.1111 0.0889
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correlation is weak, the analysis of HIEE should be

performed using duration and relative intensity si-

multaneously, since a nonlinear dependency may ex-

ist between these variables. The joint probability

distribution suggests that a severe HIEE occurs when

the relative intensity is greater than 38C (5.48F) and

persists for more than 4 days, and the probability of this

event occurring is 0.022. Only 1 event out of 45 ex-

treme events occurred during the 35-yr study period, in

September 2009 in Antigua and Barbuda, and it lasted

4.5 days and had a 48C (7.28F) relative intensity. On the

other hand, the most likely HIEE is the one that shows a

relative intensity of less than 38C (5.48F) with a duration

of fewer than 3 days, and the probability of this event

occurring is 0.55.

The annual frequency ofHIEEhas intensified since 1991

and the years with high incidences coincide with the cool

phase of ENSO. However, there were a few years when

ENSO episodes occurred and their effects were not re-

flected in the frequency of the HIEEs. Consequently, ad-

ditional research is needed to better understand the climate

parameters that control the annual frequency of HIEE.

It should be noted that this study is limited in the sense

that no validation was perform with health-related data,

FIG. 11. The (a) annual and (b) monthly frequencies of heat index extreme events.

FIG. 10. Bivariate probability distribution of duration (days) and relative intensity of heat index

(8C) extreme events.
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and no comparison was conducted with other thermal

stresses.

Acknowledgments. This work was supported primar-

ily by the National Science Foundation (NSF) Division

of Chemical, Bioengineering, Environmental, and

Transport Systems under the Environmental Engineer-

ing program with Grant CBET-1438324 and by the

National Oceanic and Atmospheric Administration

Office of Education Cooperative Remote Sensing Sci-

ence and Technology Center (NOAA-CREST) under

Grant NA11SEC4810004, and by the University of

Puerto Rico. The authors appreciate the excellent con-

tribution from anonymous reviewers that motivated us

to significantly improve the manuscript.

REFERENCES

Abraham, B., and J. Ledolter, 2006: Introduction to Regression

Modeling. Thomson Brooks/Cole, 433 pp.

Alexandersson, H., 1986: A homogeneity test applied to

precipitation data. J. Climatol., 6, 661–675, doi:10.1002/

joc.3370060607.

American Meteorological Society, 2015: Heat wave. Glossary of

Meteorology, http://glossary.ametsoc.org/wiki/Heat_wave.

Anderson, G. B., M. L. Bell, and R. D. Peng, 2013: Methods to

calculate the heat index as an exposure metric in environ-

mental health research. Environ. Health Perspect., 121,

1111–1119, doi:10.1289/ehp.1206273.

Angeles,M.E., J. E.González, N.D.Ramírez-Beltrán, C.A. Tepley,

and D. E. Comarazamy, 2010: Origins of the Caribbean rainfall

bimodal behavior. J. Geophys. Res., 115, D11106, doi:10.1029/

2009JD012990.

Dixon, R. W., 1998: A heat index climatology for the southern

United States. Natl. Wea. Dig., 22 (1), 16–21, http://nwafiles.

nwas.org/digest/papers/1997/Vol22No1/Pg16-Dixon.pdf.

Fanger, P. O., 1970: Thermal Comfort. Danish Technical Press,

244 pp.

Gallagher, C., R. Lund, and M. Robbins, 2013: Changepoint de-

tection in climate time series with long-term trends. J. Climate,

26, 4994–5006, doi:10.1175/JCLI-D-12-00704.1.

Giannini, A., Y. Kushnir, and M. A. Cane, 2001: Seasonality in the

impact of ENSO and the North Atlantic high on Caribbean

rainfall. Phys. Chem. Earth, 26B, 143–147, doi:10.1016/

S1464-1909(00)00231-8.

Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and
W. M. Gray, 2001: The recent increase in Atlantic hurricane

activity: Causes and implications. Science, 293, 474–479,

doi:10.1126/science.1060040.

González-Cruz, J., P. Sequera, Y. Molina, R. Picon, J. Pillich,

A. T. Ghebreegziabhe, and B. Bornstein, 2013: Climate and

energy vulnerability in coastal regions: The case forU.S. Pacific

and Northeast Corridor coastal regions. Climate Vulnerability:

Understanding and Addressing Threats to Essential Resources,

R. A. Pielke, Sr., Ed., Academic Press, 3–35.

Hagan, M. T., H. B. Demuth, M. Beal, and O. De Jesus, 2014:

Neural Network Design. 2nd ed. PWS Publishing, 800 pp.

Jury, M. R., 2015: Climatic trends in Puerto Rico: Observed and

projected since 1980. Climate Res., 66, 113–123, doi:10.3354/

cr01338.

Loughnan, M., N. Tapper, and T. Phan, 2014: Identifying vulner-

able populations in subtropical Brisbane, Australia: A guide

for heatwave preparedness and health promotion. ISRN

Epidemiol., 2014, 821759, doi:10.1155/2014/821759.

Méndez-Lázaro, P., O. Martínez-Sánchez, R. Méndez-Tejeda,
E. Rodríguez, E. Morales, and N. Schmitt-Cortijo, 2015:

Extreme heat events in San Juan Puerto Rico: Trends and

variability of unusual hot weather and its possible effects on

ecology and society. J. Climatol. Wea. Forecasting, 3, 135,

doi:10.4172/2332-2594.1000135.

Menne, M. J., C. N. Williams Jr., and R. S. Vose, 2009: The

U.S. Historical Climatology Network monthly tempera-

ture data, version 2. Bull. Amer. Meteor. Soc., 90, 993–1007,

doi:10.1175/2008BAMS2613.1.

Met Office, 2015. Heatwave. Met Office, accessed 1 May 2015,

http://www.metoffice.gov.uk/learning/learn-about-the-weather/

weather-phenomena/heatwave.

NCEI, 2016: NCEI GIS map portal. National Centers for Envi-

ronmental Information, accessed 20 February 2016, https://

gis.ncdc.noaa.gov/map/viewer/#app5cdo.

NCEP, 2016a:NCEP/NCARReanalysis 1: Summary.National Centers

for Environmental Prediction, accessed 20 February 2016, http://

www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html.

——, 2016b: Temporal coverage. NCEP/NCAR Reanalysis 1:

Summary. Earth System Research Laboratory, accessed

11 October 2016, http://www.esrl.noaa.gov/psd/data/gridded/

data.ncep.reanalysis.html#temp.

Null, J., 2017: El Niño and La Niña years and intensities: Based on

oceanic Niño index (ONI). Accessed 14 June 2017, http://

ggweather.com/enso/oni.htm.

NWS, 2016: What is the heat index? Accessed 22 January 2016,

http://www.weather.gov/ama/heatindex.

——, 2017: Heat watch and warning. Accessed 5 June 2017, http://

www.nws.noaa.gov/om/heat/ww.shtml.

OSHA, 2016: Weather. Rest. Shade: OSHA’s campaign to keep

workers safe in the heat. Accessed 24 July 2016, https://

www.osha.gov/SLTC/heatillness/index.html.

Peterson, T. C., and Coauthors, 1998a: Homogeneity adjustments

of in situ atmospheric climate data:A review. Int. J. Climatol., 18,

1493–1517, doi:10.1002/(SICI)1097-0088(19981115)18:13,1493::

AID-JOC329.3.0.CO;2-T.

——, R. Vose, R. Schmoyer, and V. Razuvaev, 1998b: Global

Historical Climatology Network (GHCN) quality control

of monthly temperature data. Int. J. Climatol., 18,

1169–1179, doi:10.1002/(SICI)1097-0088(199809)18:11,1169::

AID-JOC309.3.0.CO;2-U.

Portier, C. J., and Coauthors, 2010: A human health perspective on

climate change: A report outlining the research needs on the

human health effects of climate change. Environmental

Health Perspectives and National Institute of Environmental

Health Sciences Rep., 80 pp., https://www.niehs.nih.gov/

health/materials/a_human_health_perspective_on_climate_

change_full_report_508.pdf.

Rakib, Z. B., 2013: Extreme temperature climatology and evaluation

of heat index in Bangladesh during 1981-2010. J. Pres.Univ.,

2B (2), 84–95, http://presidency.edu.bd/uploads/Article012.pdf.

Reeves, J., J. Chen, X. L. Wang, R. Lund, and Q. Lu, 2007: A

review and comparison of changepoint detection techniques

for climate data. J. Appl. Meteor. Climatol., 46, 900–915,

doi:10.1175/JAM2493.1.

Robinson, P. J., 2001: On the definition of a heat wave. J. Appl.

Meteor., 40, 762–775, doi:10.1175/1520-0450(2001)040,0762:

OTDOAH.2.0.CO;2.

2924 JOURNAL OF APPL IED METEOROLOGY AND CL IMATOLOGY VOLUME 56

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 05:01 PM UTC

http://dx.doi.org/10.1002/joc.3370060607
http://dx.doi.org/10.1002/joc.3370060607
http://glossary.ametsoc.org/wiki/Heat_wave
http://dx.doi.org/10.1289/ehp.1206273
http://dx.doi.org/10.1029/2009JD012990
http://dx.doi.org/10.1029/2009JD012990
http://nwafiles.nwas.org/digest/papers/1997/Vol22No1/Pg16-Dixon.pdf
http://nwafiles.nwas.org/digest/papers/1997/Vol22No1/Pg16-Dixon.pdf
http://dx.doi.org/10.1175/JCLI-D-12-00704.1
http://dx.doi.org/10.1016/S1464-1909(00)00231-8
http://dx.doi.org/10.1016/S1464-1909(00)00231-8
http://dx.doi.org/10.1126/science.1060040
http://dx.doi.org/10.3354/cr01338
http://dx.doi.org/10.3354/cr01338
http://dx.doi.org/10.1155/2014/821759
http://dx.doi.org/10.4172/2332-2594.1000135
http://dx.doi.org/10.1175/2008BAMS2613.1
http://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/heatwave
http://www.metoffice.gov.uk/learning/learn-about-the-weather/weather-phenomena/heatwave
https://gis.ncdc.noaa.gov/map/viewer/#app=cdo
https://gis.ncdc.noaa.gov/map/viewer/#app=cdo
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html#temp
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html#temp
http://ggweather.com/enso/oni.htm
http://ggweather.com/enso/oni.htm
http://www.weather.gov/ama/heatindex
http://www.nws.noaa.gov/om/heat/ww.shtml
http://www.nws.noaa.gov/om/heat/ww.shtml
https://www.osha.gov/SLTC/heatillness/index.html
https://www.osha.gov/SLTC/heatillness/index.html
http://dx.doi.org/10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T
http://dx.doi.org/10.1002/(SICI)1097-0088(19981115)18:13<1493::AID-JOC329>3.0.CO;2-T
http://dx.doi.org/10.1002/(SICI)1097-0088(199809)18:11<1169::AID-JOC309>3.0.CO;2-U
http://dx.doi.org/10.1002/(SICI)1097-0088(199809)18:11<1169::AID-JOC309>3.0.CO;2-U
https://www.niehs.nih.gov/health/materials/a_human_health_perspective_on_climate_change_full_report_508.pdf
https://www.niehs.nih.gov/health/materials/a_human_health_perspective_on_climate_change_full_report_508.pdf
https://www.niehs.nih.gov/health/materials/a_human_health_perspective_on_climate_change_full_report_508.pdf
http://presidency.edu.bd/uploads/Article012.pdf
http://dx.doi.org/10.1175/JAM2493.1
http://dx.doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(2001)040<0762:OTDOAH>2.0.CO;2


Rohatgi, V. K., 1976: An Introduction to Probability Theory and

Mathematical Statistics. John Wiley and Sons, 684 pp.

Rothfusz, L. P., 1990: The heat index ‘‘equation’’ (or, more than

you ever wanted to know about heat index). NWS Tech.

Attachment SR 90-23, 2 pp., https://www.weather.gov/media/

ffc/ta_htindx.PDF.

Steadman, R. G., 1979: The assessment of sultriness. Part I: A

temperature-humidity index based on human physiology and

clothing science. J. Appl. Meteor., 18, 861–873, doi:10.1175/

1520-0450(1979)018,0861:TAOSPI.2.0.CO;2.

Trenberth, K. E., and Coauthors, 2007: Observations: Surface and

atmospheric climate change. Climate Change 2007: The

Physical Science Basis, S. Solomon et al., Eds., Cambridge

University Press, 235–336.

Ultsch, A., and F. Roske, 2002: Self-organizing feature maps predicting

sea levels. Inf. Sci.,144, 91–125, doi:10.1016/S0020-0255(02)00203-7.

Wang, X.Y., and Coauthors, 2012: The impact of heatwaves on

mortality and emergency hospital admissions from non-

external causes in Brisbane, Australia. Occup. Environ.

Med., 69, doi:10.1136/oem.2010.062141.

Yip, Z. K. and M. K. Yau, 2012: Application of artificial neural

networks on North Atlantic tropical cyclogenesis potential

index in climate change. J. Atmos. Oceanic Technol., 29,

1202–1220, https://doi.org/10.1175/JTECH-D-11-00178.1.

Zaman, M., G. Fang, K. Mehmood, and M. Saifullah, 2015: Trend

change study of climate variables in Xin’anjiang-Fuchunjiang

Watershed, China. Adv. Meteor., 2015, 507936, doi:10.1155/

2015/507936.

NOVEMBER 2017 RAM IREZ - BELTRAN ET AL . 2925

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 01/16/24 05:01 PM UTC

https://www.weather.gov/media/ffc/ta_htindx.PDF
https://www.weather.gov/media/ffc/ta_htindx.PDF
http://dx.doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1979)018<0861:TAOSPI>2.0.CO;2
http://dx.doi.org/10.1016/S0020-0255(02)00203-7
http://dx.doi.org/10.1136/oem.2010.062141
http://dx.doi.org/https://doi.org/10.1175/JTECH-D-11-00178.1
http://dx.doi.org/10.1155/2015/507936
http://dx.doi.org/10.1155/2015/507936

